首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17253篇
  免费   2079篇
  国内免费   804篇
电工技术   550篇
综合类   843篇
化学工业   7351篇
金属工艺   1166篇
机械仪表   298篇
建筑科学   574篇
矿业工程   245篇
能源动力   1354篇
轻工业   798篇
水利工程   157篇
石油天然气   784篇
武器工业   95篇
无线电   1003篇
一般工业技术   3881篇
冶金工业   648篇
原子能技术   189篇
自动化技术   200篇
  2024年   39篇
  2023年   540篇
  2022年   562篇
  2021年   738篇
  2020年   794篇
  2019年   775篇
  2018年   721篇
  2017年   832篇
  2016年   702篇
  2015年   708篇
  2014年   979篇
  2013年   1196篇
  2012年   1240篇
  2011年   1376篇
  2010年   944篇
  2009年   1052篇
  2008年   844篇
  2007年   1021篇
  2006年   852篇
  2005年   697篇
  2004年   569篇
  2003年   478篇
  2002年   370篇
  2001年   294篇
  2000年   237篇
  1999年   201篇
  1998年   193篇
  1997年   139篇
  1996年   126篇
  1995年   123篇
  1994年   105篇
  1993年   82篇
  1992年   90篇
  1991年   91篇
  1990年   66篇
  1989年   64篇
  1988年   50篇
  1987年   37篇
  1986年   38篇
  1985年   28篇
  1984年   30篇
  1983年   23篇
  1982年   28篇
  1981年   15篇
  1980年   17篇
  1979年   8篇
  1975年   2篇
  1973年   2篇
  1959年   2篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
In this study, the Ga–Te binary system was reassessed by means of the CALPHAD method using a modified lattice stability parameter for Te as well as experimental data for this binary system. The two-sublattice ionic solution model was applied for the liquid phase, and the intermediate phases were described by the sublattice model. A set of self-consistent thermodynamic parameters was optimized for all the phases in the Ga–Te binary system, which reproduced the phase diagram and the thermodynamic properties well. Using the reevaluated Ga–Te system, previously assessed Ga–Se system, and modified Se–Te system, a critical evaluation of the Ga–Se–Te ternary system was performed. The calculated vertical sections, isothermal sections, and liquidus projection agreed reasonably well with the experimental data. Immiscibility in the liquid phase was observed, and the origin of this behavior is discussed from a thermodynamic perspective.  相似文献   
33.
研究了不同等温退火工艺对8030铝合金导线组织及性能的影响。结果表明:等温退火前后合金均由α-Al基体和Al6Fe相组成。在同一等温温度下,随着等温时间的延长组织逐渐趋于均匀化;同一等温时间下,随着等温温度的升高,组织趋于均匀化的时间缩短。经过等温退火处理后铝合金导线的导电率均有所提高,在470 ℃均匀化退火24 h后再经240 ℃等温4 h,合金导电率达到最高值57.21%IACS,比未经热处理试样的导电率提高了2.4%IACS。经过等温退火处理后铝合金导线的硬度及抗拉强度均有所降低,塑性大幅度提高。在470 ℃均匀化退火24 h后再经260 ℃等温8 h,合金的伸长率最高可达23.64%。热处理前后合金均为塑性断裂。  相似文献   
34.
The design of highly stable and efficient porous materials is essential for developing breakthrough hydrocarbon separation methods based on physisorption to replace currently used energy-intensive distillation/absorption technologies. Efforts to develop advanced porous materials such as zeolites, coordination frameworks, and organic polymers have met with limited success. Here, a new class of ionic ultramicroporous polymers (IUPs) with high-density inorganic anions and narrowly distributed ultramicroporosity is reported, which are synthesized by a facile free-radical polymerization using branched and amphiphilic ionic compounds as reactive monomers. A covalent and ionic dual-crosslinking strategy is proposed to manipulate the pore structure of amorphous polymers at the ultramicroporous scale. The IUPs exhibit exceptional selectivity (286.1–474.4) for separating acetylene from ethylene along with high thermal and water stability, collaboratively demonstrated by gas adsorption isotherms and experimental breakthrough curves. Modeling studies unveil the specific binding sites for acetylene capture as well as the interconnected ultramicroporosity for size sieving. The porosity-engineering protocol used in this work can also be extended to the design of other ultramicroporous materials for the challenging separation of other key gas constituents.  相似文献   
35.
Effective thermal management of electronic integrated devices with high powder density has become a serious issue, which requires materials with high thermal conductivity (TC). In order to solve the problem of weak bonding between graphite and Cu, a novel Cu/graphite film/Cu sandwich composite (Cu/GF/Cu composite) with ultrahigh TC was fabricated by electro-deposition. The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electro-deposition. TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated. The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content, and the strong texture orientation of deposited Cu resulted in high TC. Under the optimizing preparing condition, the highest in-plane TC reached 824.3 W·m−1·K−1, while the ultimate tensile strength of this composite was about four times higher than that of the graphite film.  相似文献   
36.
Introducing graphene into polymer matrix is an effective way to enhance performances of anion exchange membrane (AEM). However, utilizing the advantages of graphene by physical approach is limited due to the weak interface interaction between graphene and polymer matrix. Herein, we report an effective strategy to covalently bond graphene with polymer matrix to improve the interface interaction and further to improve the properties of AEM. A series of cross-linked quaternized graphene-based hybrid AEM were fabricated by covalently bonding poly (vinylbenzyl chloride) grafted graphene (GN-g-PVBC) copolymer with chloromethyl functionalized poly (styrene-b-isobutylene-b-styrene) (SIBS) through the cross-linker (N,N,N′,N′-tetramethyl-1,6-hexanediamine) by in-situ synthetic approach. The interface interaction between graphene and QSIBS is greatly enhanced according to micromorphology characterization of the hybrid membrane. The cross-linked quaternized hybrid AEM containing 0.55 wt% of GN-g-PVBC exhibits obviously improved dynamical mechanical properties (storage modulus: 418 MPa), ion conductivity (1.81 × 102 S cm?1), methanol barrier property (5.19 × 10?7 cm2 s?1), selectivity (3.49 × 104 S s cm?3) at 60 °C and especially a comparably excellent chemical stability to that of Nafion 115 due to the enhanced interface interaction between graphene and the polymer matrix.  相似文献   
37.
Lc is the minimum length of carbon nanotubes (CNTs) required for efficient transfer of filler conductivity to polymer matrix in polymer CNT nanocomposites (PCNTs). In this work, Lc is correlated with the dimensions of the CNTs and the interphase thickness. Subsequently, the interfacial conductivity as well as the effective length and concentration of CNTs are expressed by CNT and interphase properties. Moreover, a simple model for the tunneling conductivity of PCNTs is developed with these effective terms. The impacts of all parameters on Lc, the interfacial conductivity, the fraction of CNTs in the networks and the conductivity of the PCNT are explained and justified. In addition, the predictions of the percolation threshold and conductivity are compared with the experimental results of several samples. The desirable values of interfacial conductivity are achieved by thin, short and super‐conductive CNTs, high waviness and a thick interphase. However, thin and long CNTs, low waviness, a thick interphase, poor tunneling resistivity due to the polymer matrix and a short tunneling distance advantageously affect the conductivity of PCNTs, because they produce large conductive networks. The predictions also show good agreement with the experimental measurements of percolation threshold and conductivity, which confirms the developed equations. © 2020 Society of Chemical Industry  相似文献   
38.
Nafion membranes were prepared by incorporating in the polymer matrix the 1‐butyl‐3‐methylimidazolium (BMI+) ionic liquid cation at different doping levels. Increasing the doping time of the membranes with the ionic liquid results in increased incorporation of the BMI+ cation but a decrease in the bulk conductivity. The thermogravimetric analysis shows that the BMI+ cation incorporation increases the thermal stability of the membranes. The higher discharge efficiency of the fuel cell at 80°C was obtained by using Nafion membrane after 15 minutes of doping in the ionic liquid solution.  相似文献   
39.
A novel gel polymer electrolyte (GPE) which is based on new synthesized boron‐containing monomer, benzyl methacrylate, 1 m LiClO4/N,N‐dimethylformamidel liquid electrolyte solution is prepared through a one‐step synthesis method. The boron‐containing GPE (B‐GPE) not only displays excellent mechanical behavior, favorable thermal stability, but also exhibits an outstanding ionic conductivity of 2.33 mS cm?1 at room temperature owing to the presence of anion‐trapping boron sites. The lithium ion transference in this gel polymer film at ambient temperature is 0.60. Furthermore, the symmetrical supercapacitor which is fabricated with B‐GPE as electrolyte and reduced graphene oxide as electrode demonstrates a broad potential window of 2.3 V. The specific capacitance of symmetrical B‐GPE supercapacitors retains 90% after 3000 charge–discharge cycles at current density of 1 A g?1.  相似文献   
40.
The present study investigates the thermal conductivity of bimodal SiC particulate distribution in aluminum matrix composites fabricated via powder metallurgy route. The effects of the SiCp reinforcement size distribution and processing parameters such as sintering time and temperature on the thermal conductivity have been examined. The Box–Behnken experimental array was employed to identify the effects of selected variables on the thermal conductivity of the composite. A reasonable augmentation in the thermal conductivity was observed with an increase in sintering time and %volume fraction of fine SiC particulates. It has been demonstrated that the matrix doped with fine SiC particulates (37?µm) occupied interstitial positions and formed continuous SiC–matrix network resulting in minimizing the micropores that contributed for good thermal conductivity, that is, 235?W/mK. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were conducted to evaluate the microstructure architecture and interfacial phase formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号